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Knowledge of the elastic induced stresses and whefioons is the first step in computing the roclstdeplastic
reaction to deep tunnel excavation. The followiteps are well defined but it is the first step tfafpermeable
rocks, is unlikely to be satisfied. The reasonhigt tthe closed elastic solution suffers logarithame higher
order divergences. Unlike tunnels deep cavernsalgresent any diverging phenomena and the paper wi
focus on the tunnel problem. A renormalization e€sage forces is necessary to eliminate divergiiegts.
Drainage reduces cohesion leading to an earlyr&gilugreater radius of the elasto-plastic interfaed a larger
ground reaction. A procedure that is compatiblenveibalytical or numerical treatments is used to e
ground reaction which is useful for tunnel desigm dining dimensioning. Tunnel deformation or grdun
reaction is defined by two variables that are thygpert pressure and the water inflow.
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1. Introduction

Deep tunnels or caverns are schematized as apeftusn infinite rock mass. The infinite rock
mass hypothesis simplifies the evolution equatiohgylindrical and spherical excavations. In
impermeable rocks, closed solutions have long lised for tunnel design. They provide realistic
values of the generated stresses and deformatibes tunnel depth exceeds six times the elasto-
plastic interface radius. This idyllic situationrie longer valid for tunnels in permeable rocks. A
logarithmic divergence occurs and the solutiomisaunded. The asymptotic behavior of the main
variables in permeable rocks is shown in Tablelclwishows that caverns are not affected by the
divergence phenomenon. There are a number of palteotutions to the tunnel problem. One of
these is to consider a limited extension of th& medium with an outer cylindrical boundary at a
great distance from the tunnel. Such an alternaiveothing new and can be treated developing a
few lines of numerical code or by using an appmtprcommercial numerical code. The scope of
the paper is to resolve the logarithmic divergerdg®lysis of the divergence phenomena requires
knowledge of the elastic part of the solution betwéwo concentric cylinders. The radius of the
outer cylinder will then be increased indefinitelfile introducing the necessary conditions to
impede any diverging effect.

Table 1. Asymptotic radial behavior of the mainighles in an
infinite permeable rock mass.

Cavern Tunnel

Mechanical stress 1 r2

Mechanical displacement 7 rt

Pressure gradient 7 rt

Water Pressure 1 Logr
0

Water induced displacement r rLogr




2. Radial Steady State

Water percolation produces a mass force that isfedughout the rock masses. The steady radial
equilibrium equation is transformed into

do, emZi =9 ¢

dr r (1)

in which o, o, f and r are the principal effective radial andgntial stresses, percolation force
and radial coordinate; Parameter takes on the value one and two for tunnels anceroav
respectively. Percolation force is the opposit®afcy’s driving force

_dp
f dr @
in which p is water pressure. There is an alteveatnode to express the percolation force
considering the total volume of water Q that flaaesoss a surface of area S enveloping the tunnel
or cavern and at a distance r from the centethdrcase of a cavern the surface is closed an@in th
case of tunnel it will be cylindrical of unit lortgdinal length. The percolation force is transfodme
considering Darcy’s law and is obtained as

f= g
Sk
in which k is the hydraulic conductivity. Seepageces decrease as the distance from the tunnel or

cavern increases because Q is a constant andeases: For a tunnel seepage forces decreases as
the inverse of the radial distance and for a caitatacreases as its square.

3)

2.1. Boundaries and interface

Three concentric surfaces with radius a, b andlicheiused in the analysis; a is the radius of the
tunnel or cavern, b is the radius of the elastasiit interface and c is the radius of an outer
boundary. The difference between b and a is thenéxtf the plastic zone. If rock unloading is not

enough to produce a plastic zone a and b are eqadsdifference between ¢ and b is the extent
of the elastic zone. ¢ is assumed to be alwaysearéean b.

2.2. Initial and boundary conditions

Homogeneous states of stress and water pressupgesent everywhere before excavation. They
are noteds,; and p. These remain unchanged after excavation on ttex boundary. On the tunnel
edge a radial load, and a water pressurg @re applied. These conditions are necessary @ sol
and find stresses and deformation at any radighmiie. On the elastic plastic interface radial
stress and water pressure are natgdnd p. The radial effective stress on the tunnel edgés
also known as the applied effective pressure apga@t pressure.

2.3. Materials

Different linear elastic parameters, hydraulic agctivities and plastic yield criteria are admitted
in the elastic and plastic zones. A non-associgtlastic flow potential is also admitted. Where
necessary, material parameters are indicated bgrsthipts e or p to distinguish the elastic and
plastic zones.



2.4. Sign convention

Compressive stresses are negative. Water presspositive. Water inflow is positive for draining
tunnels. Displacement is positive outward.

3. Solution Procedure

The elastic-plastic solution can be computed nuradlyi or analytically. The choice of the yield
criterion and plastic flow are determinant and damor one treatment over the other. The
resolution method is not the most important thiAgcorrect result is the most important thing
despite the fact that different resolution methskisuld be compared to one another. The adopted
resolution, whether it be numerical or analytiesil] follow different procedures. The procedure
that is used here is an adaptation for permealgksrof the classical procedure that can be found
in many rock mechanics textbooks for circular opgrin impermeable rocks. The steps are

- Define the support pressure on the tunnel edgetendmount of water inflow

- If elastic stresses have reached the failure @itego to next step else compute the
required information using the elastic solution

- Calculate the extent of the plastic zone or thetigglastic interface by equating the
elastic radial stress and plastic radial stre$iseainterface

- Calculate the elastic displacement at the intertesieg the elastic solution

- Calculate the deformation of the plastic zone aerang that radial displacement is
continuous across the interface

- When ground reaction is sought, compute tunnelrdeftion and return to the first step
changing the water inflow and the support pressure

4. Beyond The Elastic Plastic Interface

Closed analytical solutions to the elastic statisvben two concentric surfaces in 2D and 3D are
known. They can be used to compute the necesdarmation beyond the elastic plastic interface
when the radius of the outer boundary is finiter. ifinite medium these solutions will be used if
increasing indefinitely the radius of the outer badary creates a converging process. Appendix A
and Appendix B contain reminders of the elasticisoh in a drained rock between two concentric
cylinders and spheres. It is obvious that, for @n#l, the process of increasing indefinitely the
outer radius, the solution does not converge. Bgemmn there is no diverging phenomenon. So in
the case of tunnels, the problem needs special Aadi#ferent treatment has to be conceived.

4.1. Renormalizing

The origin of the divergence phenomenon in thetielasne is the axisymmetric water flow. The
main relation of the radial steady flow between teocentric cylinders is

Q =27k Pc ~ Pp (4)
In=
b
Increasing indefinitely the outer radius c can leadwo different situations. If the initial andhél
water pressures are not equal water inflow is @b alternatively if water inflow is not zero the
difference between the final and initial pressusemfinite. Both situations are absurdities. They
are not real and are produced by a mathematicasl&iion of a simplified schematization of



reality. It is supposed that both the water inflamd the water pressure difference are
simultaneously finite or equal to zero. This metinag the ratio k/In(c/b) should remain finite when
the outer radius increases indefinitely. Rewritthg permeability asgk(c/b) gives the desired
result. This is just a mathematical artifice thatl wllow the solution to be extended to an
unlimited rock medium. Keeping this in mind, théusimn between two concentric cylinders that is
given in appendix A with an infinite outer radiusdomes

_ b2 b2
0, =0 - @ra) PP A=) 40y )
_ b2 b2
0 = (0, - A+ a) PPy 2y -0 (6)
- 2 -
u=—1 _ _(0.-0, - Q+a) e P pb)b——i Pe=Popy e, @)
l-a)E 2 r E 2 @l+a)E

in whicha and E take values that change for plane strain or paress problems and are defined
in Appendix A using the Poisson coefficiemtand the elastic modulus E. The initial state is
obtained when the inner stress and water presseregaal to the outer stress and water pressure
respectively

o, =0, (8)
at = ac (9)
— JC

Uo _—(l+a)Er (10)

4.2. Interface values

At the elastic plastic interface, which is the inbeundary of the elastic zone, the radial stress a
the displacement difference to the initial displaeat are obtained from (5) to (7) and (10)

o, (b) =0, (11)
7,(b) = 20, - 0, - (L+&@)(Pe - P) (12)
u(b) - o (b) =1+?”(ac Gy = Po + Py) (13)

These three relations contain six unknowns. Othlations are needed to compute them all.

5. Failure

A vyield criterion divides the stress space int@wa#d and forbidden regions. Inside the allowed
region, the rock behaves elastically and, on itsindary, the rock behaves plastically.

Mathematically, the allowed region is convex andramscribed using an inequality that becomes
an equality only when rocks enter plasticity. Rtagbnes are characterized by the following yield
relation

F(o,,0.,k)=0 (14)



in whichk is a variable that controls the amount of hardgmin softening. Locally in the stress
space the yield criterion can be expanded in & dirder Taylor series taking a Mohr-Coulomb
shape

o, =Ao, +1-A)c (15)

in which ¢ and\ are a rearranging of the expansion coefficienteyTare related to the Mohr-
Coulomb cohesion C and friction angleéhrough the following relations

) =1Fsing (16)
1-sing

c=L0% 17)
sing

The Taylor series expansion is helpful in undewditag the role of water presence during the
failure process in the elastic and in the plastices.

5.1. Failureinitiation

At the elastic plastic interface the following & is obtained, combining the Taylor expansion
of the yield criterion (15) with the radial and ¢gmtial stresses (11) and (12) of the elastic side

_20,—(+a)(Pc ~ Py) - @-A°%)c®
b 1+ ¢

(18)

Failure starts at the tunnel edge and then propagAt failure initiation the elastic plastic rasliis
equal to the tunnel radius. Taking this in consatien into the above relation, it is deduced that
the effective pressure at which failure initiatasgreater when draining; i.e>p,. Drainage
anticipates failure.

5.2. Plastic equilibrium

Combining the equilibrium equation with the Taybxpansion of the yield criterion in the plastic
zone and integrating near the tunnel edge gives

Q

_ L AP-1 p_
Oy _Ua(a) +[C 27'kp(/]p _1)

11— ()" (19)
a

In the plastic zone, the water inflow, the hydragionductivity and the friction angle influence the
overall cohesion given by the first square bracket$19). If an increasing radial compressive
stress is required the applied effective load anttinnel edge will have to satisfy the following
condition

Q

—g,zCcP+————
27k P (AP -1)

(20)

The minimal required cohesion that produces area&ing compressive radial stress in the plastic
zone is obtained from (20) considering a non stegodraining tunnel; i.e5, =0 and Q>0. The



minimal cohesion increases with the ratio of théewanflow to the hydraulic permeability and was
used in tunnel design by Egger et al. (1982). Tkiersion of the plastic zone is obtained
considering that radial stress is continuous airite¥face. Equating at the interface the rightchan
sides of (18) and (19) for an infinite rock or (A&)d (19) for a bounded rock leads to an equation
which solution is the extent of the elasto-plaBiterface.

5.3. Plastic displacement

A first order Taylor series expansion in the stigsace of the plastic flow potential G will lead to
G=0,-1A%, (21)

in which AY is a rearrangement of the Taylor expansion cdeffts and may be considered as the
local dilatancy coefficient. The overall deformattim the plastic zone is the sum of the plastic and
elastic deformation. The variation of the plastefatmation is the gradient in the space stress of
the flow potential. These two statements are coatbfinding the local deformation equation

%ugﬂzgfp + 1968 — £8P (1) — A9£2P (b) (22)
r r
in which £ and &7 are the radial and tangent elastic deformationsutated in the plastic zone.

The integration of (22) is straightforward leaditoga closed form using expression (19) for the
radial stress, the corresponding tangent stresenglyy (15) and the linear elastic stress-
deformation relations with their corresponding ptagone coefficients. The closed form is valid
locally in the plastic zone as long as the yielthction and potential flow Taylor expansions are
valid approximations.

6. Ground Reaction

For permeable rocks, the ground reaction beconsesface sustained by two variables, which are
the applied effective pressure and water inflowuFeés 1 and 2 illustrate the effect of drainage on
ground reaction and the state of stress. Iso-Qesuversus the effective applied pressure are used
for the illustration. A positive Q is for a draigirtunnel and a negative Q is for a water tunnel
under pressure.
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Fig. 1. Ground reaction for a draining tunnel,ca iraining tunnel and a water tunnel under pressur
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Fig. 2. State of stresses for different drainaggdtions. Lower and upper curves are the radidl tangent stresses.

The ground reaction and the state of stresses eliargifferent draining conditions. Negative

water inflow corresponds to aquifer recharging witreater pressure at the tunnel edge than the
initial one. Increasing water pressure at the tuadge in a low permeable rock may transfer a part
of it on the applied load and may lead to hydrojaglor hydrofracturing as discussed by Deere et
al. (1989). Other aspects of draining tunnels mgatéd by Adachi (1986), Anagnostou et al.
(2005), Bilfinger (2005) and Egger et al. (1982l am non-radial flow by Fernandez et al. (1994).

7. Conclusion

Water drainage produces in tunneling a divergingngimenon that is overcome by redefining the
permeability relation in the elastic zone. Stressas displacements may be obtained in a closed
form all over the rock mass depending on the y&id plastic flow potential that are used. First
order Taylor expansions of the yield criterion gofastic flow potential allow a close insight into
local drainage effect. Drainage produces a preradailure and reduces the overall cohesion.

Appendix A — Steady linear hydro elasticity betweertwo concentric cylinders

A compact radial stress is defined using the dffeatidial stress and the water inflow as

o —(-a) 2 Q
g, =0, - a)8nk (l+a)4nklnr (A1)

in whicha is equal tov for plane stress problem andw§1-v) for plane deformation problem. A

compact tangential stress is defined similarly e tadial compact stress (Al) changing the
subscripts r to t and is distinguished from theeeffre tangent stress by an upper bar. From
elasticity stresses and radial displacement astamiie r from the center are calculated from the



boundary radial stresseg anda. and their corresponding compact forms, which asgrdjuished
by an upper bar replacing in (A1) r by b and ¢ eesipely

_ _o,lc*-7.1b*  F,-7, 1 (A2)
1/c?-1/b?>  1/c?-1/b? r?
Et:Eb/cz—EC/b2+ T,-0, 1 _(@-0a)Q (A3)
1/¢?-1/b%  1/c?-1/b? r2 4K
= 2 _ = 2 _
U= 1_ab/c o.lb . 1_ Op=0c 1, Q_r(lnr—l) (Ad)
@+a)E 1/c?-1/b? (@-a)E 1/c? -1/b% r  47KE 2
in which
E - E (A5)
L+v)1-a)
Appendix B — Steady linear hydro elasticity betweemwo concentric spheres
A compact radial stress is defined as
g =0, ,v Q1 (B1)
1-v 47Kk r

Radial compact stresses on the boundaries araglisghed from the effective radial stregsand
o. by an upper bar replacing in (B1) r by b and geesively. A compact tangential stress is
defined similarly to the radial one changing in JBie subscripts r to t. The elastic solution is

E_Eb/c3—ﬁclb3 g,-0, 1

— (B2)
"1/¢d-1/b® 1/cd-1/b3 1B
— 3= 3 - = _
at:ab/cs JC/sb . ag Jcsis_l 2v Q1 (B3)
1/c°-1/b 1/c° -1/b° 2r 1-v 87Kk r
D Y P B = _ = _
u:l v ab/c3 aclgb r+1+|/ ag acsiz_(lw)(l v) Q (B4)
E  1/c®-1/b 2E 1/c®-1/0°%r @-v)E 87k
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