
XII-00051.01.EN (12.50) 

Our Ref.:102.1-R-199 Minusio, novembre 2006 

 

 

Rock Mechanics in Underground Construction 

GROUND REACTION TO DEEP  

DRAINING TUNNELS 

ISRM International Symposium 2006 

4th ARMS, 8-10.11.2006 

 
by Mohamed El Tani 

 
 

Editor: C.F. Leung, Y.X. Zhou, World Scientific 
 





 

 

GROUND REACTION TO DEEP DRAINING TUNNELS 

M. EL TANI1  
1Lombardi Eng. Ltd., Minusio-Locarno, Switzerland 

(mohamed.eltani@lombardi.ch) 
 
 

Knowledge of the elastic induced stresses and deformations is the first step in computing the rock elasto-plastic 
reaction to deep tunnel excavation. The following steps are well defined but it is the first step that, in permeable 
rocks, is unlikely to be satisfied. The reason is that the closed elastic solution suffers logarithmic and higher 
order divergences. Unlike tunnels deep caverns do not present any diverging phenomena and the paper will 
focus on the tunnel problem. A renormalization of seepage forces is necessary to eliminate diverging effects. 
Drainage reduces cohesion leading to an early failure, a greater radius of the elasto-plastic interface and a larger 
ground reaction. A procedure that is compatible with analytical or numerical treatments is used to compute 
ground reaction which is useful for tunnel design and lining dimensioning. Tunnel deformation or ground 
reaction is defined by two variables that are the support pressure and the water inflow.  
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1.   Introduction 

Deep tunnels or caverns are schematized as apertures in an infinite rock mass. The infinite rock 
mass hypothesis simplifies the evolution equations of cylindrical and spherical excavations. In 
impermeable rocks, closed solutions have long been used for tunnel design. They provide realistic 
values of the generated stresses and deformations when tunnel depth exceeds six times the elasto-
plastic interface radius. This idyllic situation is no longer valid for tunnels in permeable rocks. A 
logarithmic divergence occurs and the solution is unbounded. The asymptotic behavior of the main 
variables in permeable rocks is shown in Table1 which shows that caverns are not affected by the 
divergence phenomenon. There are a number of potential solutions to the tunnel problem. One of 
these is to consider a limited extension of the rock medium with an outer cylindrical boundary at a 
great distance from the tunnel. Such an alternative is nothing  new and can be treated developing a 
few lines of numerical code or by using an appropriate commercial numerical code. The scope of 
the paper is to resolve the logarithmic divergence. Analysis of the divergence phenomena requires 
knowledge of the elastic part of the solution between two concentric cylinders. The radius of the 
outer cylinder will then be increased indefinitely while introducing the necessary conditions to 
impede any diverging effect. 

Table 1. Asymptotic radial behavior of the main variables in an 
infinite permeable rock mass. 

 Cavern Tunnel 

Mechanical stress r -3 r –2 

Mechanical displacement r -2 r –1 

Pressure gradient r -2 r –1 

Water Pressure r -1 Log r 

Water induced displacement r 0 r Log r 

 



2.   Radial Steady State 

Water percolation produces a mass force that is felt throughout the rock masses. The steady radial 
equilibrium equation is transformed into 
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in which σr, σt, f and r are the principal effective radial and tangential stresses, percolation force 
and radial coordinate; Parameter m takes on the value one and two for tunnels and caverns 
respectively.  Percolation force is the opposite of Darcy’s driving force 
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in which p is water pressure. There is an alternative mode to express the percolation force 
considering the total volume of water Q that flows across a surface of area S enveloping the tunnel 
or cavern and at a distance r from the center. In the case of a cavern the surface is closed and in the 
case of tunnel it will be cylindrical of unit longitudinal length. The percolation force is transformed 
considering Darcy’s law and is obtained as 
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in which k is the hydraulic conductivity. Seepage forces decrease as the distance from the tunnel or 
cavern increases because Q is a constant and S increases. For a tunnel seepage forces decreases as 
the inverse of the radial distance and for a cavern it decreases as its square. 

2.1.   Boundaries and interface 

Three concentric surfaces with radius a, b and c will be used in the analysis; a is the radius of the 
tunnel or cavern, b is the radius of the elastic plastic interface and c is the radius of an outer 
boundary. The difference between b and a is the extent of the plastic zone. If rock unloading is not 
enough to produce a plastic zone a and b are equals. The difference between c and b is the extent 
of the elastic zone. c is assumed to be always greater than b.  

2.2.   Initial and boundary conditions 

Homogeneous states of stress and water pressure are present everywhere before excavation. They 
are noted σc and pc. These remain unchanged after excavation on the outer boundary. On the tunnel 
edge a radial load σa and a water pressure pa are applied. These conditions are necessary to solve 
and find stresses and deformation at any radial distance. On the elastic plastic interface radial 
stress and water pressure are noted σb and pb. The radial effective stress on the tunnel edge σa is 
also known as the applied effective  pressure and support pressure. 

2.3.   Materials 

Different linear elastic parameters, hydraulic conductivities and plastic yield criteria are admitted 
in the elastic and plastic zones. A non-associative plastic flow potential is also admitted. Where 
necessary, material parameters are indicated by superscripts e or p to distinguish the elastic and 
plastic zones. 



2.4.   Sign convention 

Compressive stresses are negative. Water pressure is positive. Water inflow is positive for draining 
tunnels.  Displacement is positive outward.  

3.   Solution Procedure 

The elastic-plastic solution can be computed numerically or analytically. The choice of the yield 
criterion and plastic flow are determinant and can favor one treatment over the other. The 
resolution method is not the most important thing. A correct result is the most important thing 
despite the fact that different resolution methods should be compared to one another. The adopted 
resolution, whether it be numerical or analytical, will follow different procedures. The procedure 
that is used here is an adaptation for permeable rocks of the classical procedure that can be found 
in many rock mechanics textbooks for circular opening in impermeable rocks. The steps are 
   

- Define the support pressure on the tunnel edge and the amount of water inflow 
- If elastic stresses have reached the failure criterion go to next step else compute the 

required information using the elastic solution 
- Calculate the extent of the plastic zone or the elastic plastic interface by equating the 

elastic radial stress and plastic radial stress at the interface 
- Calculate the elastic displacement at the interface using the elastic solution 
- Calculate the deformation of the plastic zone considering that radial displacement is 

continuous across the interface 
- When ground reaction is sought, compute tunnel deformation and return to the first step 

changing the water inflow and the support pressure 

4.   Beyond The Elastic Plastic Interface 

Closed analytical solutions to the elastic state between two concentric surfaces in 2D and 3D are 
known. They can be used to compute the necessary information beyond the elastic plastic interface 
when the radius of the outer boundary is finite. For infinite medium these solutions will be used if 
increasing indefinitely the radius of the outer boundary creates a converging process. Appendix A 
and Appendix B contain reminders of the elastic solution in a drained rock between two concentric 
cylinders and spheres. It is obvious that, for a tunnel, the process of increasing indefinitely the 
outer radius, the solution does not converge. For cavern there is no diverging phenomenon. So in 
the case of tunnels, the problem needs special care. A different treatment has to be conceived. 

4.1.   Renormalizing 

The origin of the divergence phenomenon in the elastic zone is the axisymmetric water flow. The 
main relation of the radial steady flow between two concentric cylinders is 
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Increasing indefinitely the outer radius c can lead to two different situations. If the initial and final 
water pressures are not equal water inflow is zero and alternatively if water inflow is not zero the 
difference between the final and initial pressures is infinite. Both situations are absurdities. They 
are not real and are produced by a mathematical translation of a simplified schematization of 



reality. It is supposed that both the water inflow and the water pressure difference are 
simultaneously finite or equal to zero. This means that the ratio k/ln(c/b) should remain finite when 
the outer radius increases indefinitely. Rewriting the permeability as k0ln(c/b) gives the desired 
result. This is just a mathematical artifice that will allow the solution to be extended to an 
unlimited rock medium. Keeping this in mind, the solution between two concentric cylinders that is 
given in appendix A with an infinite outer radius becomes 
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in which α and E  take values that change for plane strain or plane stress problems and are defined 
in Appendix A using the Poisson coefficient ν and the elastic modulus E. The initial state is 
obtained when the inner stress and water pressure are equal to the outer stress and water pressure 
respectively 
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4.2.   Interface values  

At the elastic plastic interface, which is the inner boundary of the elastic zone, the radial stress and 
the displacement difference to the initial displacement are obtained from (5) to (7) and (10)  
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These three relations contain six unknowns. Other relations are needed to compute them all. 

5.   Failure 

A yield criterion divides the stress space into allowed and forbidden regions. Inside the allowed 
region, the rock behaves elastically and, on its boundary, the rock behaves plastically. 
Mathematically, the allowed region is convex and is transcribed using an inequality that becomes 
an equality only when rocks enter plasticity. Plastic zones are characterized by the following yield 
relation   

 0),,( =κσσ trF   (14) 



 
in which κ is a variable that controls the amount of hardening or softening. Locally in the stress 
space the yield criterion can be expanded in a first order Taylor series taking a Mohr-Coulomb 
shape 
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in which c and λ are a rearranging of the expansion coefficients. They are related to the Mohr-
Coulomb cohesion C and friction angle ϕ through the following relations 
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The Taylor series expansion is helpful in understanding the role of water presence during the 
failure process in the elastic and in the plastic zones.  
 

5.1.   Failure initiation  

At the elastic plastic interface the following relation is obtained, combining the Taylor expansion 
of the yield criterion (15) with the radial and tangential stresses (11) and (12) of the elastic side 
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Failure starts at the tunnel edge and then propagates. At failure initiation the elastic plastic radius is 
equal to the tunnel radius. Taking this in consideration into the above relation, it is deduced that 
the effective pressure at which failure initiates is greater when draining; i.e. pc>pb. Drainage 
anticipates failure. 

5.2.   Plastic equilibrium 

Combining the equilibrium equation with the Taylor expansion of the yield criterion in the plastic 
zone and integrating near the tunnel edge gives 
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In the plastic zone, the water inflow, the hydraulic conductivity and the friction angle influence the 
overall cohesion given by the first square brackets in (19). If an increasing radial compressive 
stress is required the applied effective load on the tunnel edge will have to satisfy the following 
condition  
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The minimal required cohesion that produces an increasing compressive radial stress in the plastic 
zone is obtained  from (20) considering a non supported draining tunnel; i.e. σa =0 and Q>0. The 



minimal cohesion increases with the ratio of the water inflow to the hydraulic permeability and was 
used in tunnel design by Egger et al. (1982). The extension of the plastic zone is obtained 
considering that radial stress is continuous at the interface. Equating at the interface the right hand 
sides of (18) and (19) for an infinite rock or (A2) and (19) for a bounded rock leads to an equation 
which solution is the extent of the elasto-plastic interface. 

5.3.   Plastic displacement 

A first order Taylor series expansion in the stress space of the plastic flow potential G will lead to  

 r
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in which λg is a rearrangement of the Taylor expansion coefficients and may be considered as the 
local dilatancy coefficient. The overall deformation in the plastic zone is the sum of the plastic and 
elastic deformation. The variation of the plastic deformation is the gradient in the space stress of 
the flow potential. These two statements are combined finding the local deformation equation 

 )()( bb
r

u

dr

du ep
t

gep
r

ep
t

gep
r

g ελεελελ −−+=+  (22) 

in which ep
rε and ep

tε are the radial and tangent elastic deformations calculated in the plastic zone. 

The integration of (22) is straightforward leading to a closed form using expression (19) for the 
radial stress, the corresponding tangent stress given by (15) and the linear elastic stress-
deformation relations with their corresponding plastic zone coefficients. The closed form is valid 
locally in the plastic zone as long as the yield  function and potential flow Taylor expansions are 
valid approximations.  

6.   Ground Reaction 

For permeable rocks, the ground reaction becomes a surface sustained by two variables, which are 
the applied effective pressure and water inflow. Figures 1 and 2 illustrate the effect of drainage on 
ground reaction and the state of stress. Iso-Q curves versus the effective applied pressure are used 
for the illustration. A positive Q is for a draining tunnel and a negative Q is for a water tunnel 
under pressure. 
 

 

Fig. 1.  Ground reaction for a draining tunnel, a non draining tunnel and a water tunnel under pressure. 



 

 
The ground reaction and the state of stresses change in different draining conditions. Negative 
water inflow corresponds to aquifer recharging with a greater pressure at the tunnel edge than the 
initial one. Increasing water pressure at the tunnel edge in a low permeable rock may transfer a part 
of it on the applied load and may lead to hydrojacking or hydrofracturing  as discussed by Deere et 
al. (1989). Other aspects of draining tunnels are treated by Adachi (1986), Anagnostou et al. 
(2005), Bilfinger (2005) and Egger et al. (1982) and to non-radial flow by Fernandez et al. (1994). 

7.   Conclusion 

Water drainage produces in tunneling a diverging phenomenon that is overcome by redefining the 
permeability relation in the elastic zone. Stresses and displacements may be obtained in a closed 
form all over the rock mass depending on the yield and plastic flow potential that are used. First 
order Taylor expansions of the yield criterion and plastic flow potential allow a close insight into 
local drainage effect. Drainage produces a premature failure and reduces the overall cohesion.  

Appendix A – Steady linear hydro elasticity between two concentric cylinders 

A compact radial stress is defined using the effective radial stress and the water inflow as 
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in which α is equal to ν for plane stress problem and to ν/(1−ν) for plane deformation problem. A 
compact tangential stress is defined similarly to the radial compact stress (A1) changing the 
subscripts r to t and is distinguished from the effective tangent stress by an upper bar. From 
elasticity stresses and radial displacement at a distance r from the center are calculated from the 

 

Fig. 2.  State of stresses for different drainage conditions. Lower and upper curves are the radial and  tangent stresses.  



boundary radial stresses σb and σc and their corresponding compact forms, which are distinguished 
by an upper bar replacing in (A1) r by b and c respectively 
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in which 
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Appendix B – Steady linear hydro elasticity between two concentric spheres 

A compact radial stress is defined as 
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Radial compact stresses on the boundaries are distinguished from the effective radial stress σb and 
σc by an upper bar replacing in (B1) r by b and c respectively. A compact tangential stress is 
defined similarly to the radial one changing in (B1) the subscripts r to t.  The elastic solution is 
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