Railway tunnels

Rollup Image
Page Content
New Albula Tunnel II - Lot 105, Consolidation Raibler CornieuleReferences_1842
The 5‘864 m long Albula Tunnel (I) is situated on the railway line Chur-Thusis-St. Moritz and was put into operation in 1903. The new Albula Tunnel II is being constructed parallel to the existing Albula Tunnel with an axial distance of 30 m. When constructing the first Albula Tunnel I, the aquiferous zone of the so-called Raibler-Formation (cell dolomite rock) already revealed to be a geologically difficult zone. In 2013, starting from a specially excavated cavern connected to the existing tunnel, exploration drillings have been done in the whole Raibler-Formation zone in order to develop a more accurate geological model. The cavern, situated in the axis of the Albula Tunnel II, is only accessible through a cross passage from the Albula Tunnel I. Following the drillings results, the Raibler-Formation can be subdivided in three different geological sectors. The sector denominated III is a fault zone of silty fine sand (swimming Raibler-Formation) with a water pressure of approximately 5 bar. For safety reason the sector III will be excavated with the freezing method. Before starting the excavation, the ice casing will have to be built. This will perform a temporary support against rock and groundwater pressure and furthermore ensure the sector’s impermeability during construction time. Apart from the drillings for the construction of the ice casing, control drillings to monitor the ice casing’s impermeability and injection and drainage drillings to reduce the amount of water, will be necessary. The ice casing will be retained until the termination of the excavation and inner lining in sector III.
Turin-Ceres - Connection of the line with the RFI network - EquipmentReferences_2529
The connection of the Turin-Ceres railway (Gruppo Torinese Trasporti) with the Turin railway network (Rete Ferroviaria Italiana) represents important underground works of approximately 4.2 km including the realization of a new twin-track tunnel along Largo Grosseto, the completion of Rebaudengo Station and the adaption of an existing twin-track tunnel section. In addition to the structural design, Lombardi has developed the detailed design of the necessary electromechanical equipment to ensure the safety of users and the functionality of the railway’s operation. The design of Grosseto Station has been developed using Building Information Modelling (BIM) which allowed an efficient interaction between the different design disciplines, obtaining a high-quality result. The electromechanical system, designed with respect to the safety requirements of the Ministerial Decree 28.10.2005 “Safety of railway tunnels”, includes the medium and low voltage power supply, the normal and emergency lighting system, a complex ventilation and fumes control system for the underground stations, the pressurization system of the emergency exits, the fire detection system, the water distribution networks for the hydrants and the automatic high pressure sprinkler extinguishing system, the ventilation and air-conditioning of the technical rooms, the video surveillance as well as the intrusion protection and monitoring systems.
Brenner Base TunnelReferences_2308
The BBT consists of two single-track tunnels at a distance of approx. 70 m. The Tunnels are connected by cross-passages at intervals of 333 m. The cross-passages serve as escape routes in case of an emergency. A distinctive feature of the base tunnel is the exploratory tunnel; it lies at a depth of approx. 12 m below and between the two main tunnels with a diameter ranging from 6 to 8 m. The excavation of the exploratory tunnel will help determine the exact geological nature of the rock and therefore minimize the excavation cost and time of the main tunnels. After completion of the main tunnels, the exploratory tunnel will be used as a service and drainage tunnel. Upon completion of the BBT, the tunnel will have a total length of 64 km and be the world’s longest underground railway connection. In Innsbruck, the tunnel connects to the current bypass, which leads into the Unterinntalstrasse in Tulfes. Parallel to the bypass there will be an emergency tunnel/gallery. The two main tunnels between Innsbruck and Franzenfeste are 55 km long. The gradient of the base tunnel is 6.7‰ on the north side and 4.0‰ on the south side. Lombardi Ltd., together with partners of the joint venture BBT north, was assigned the planning, tendering, design details and geotechnical supervision of the construction lots H21 (Sillschlucht), H41 (Sillschlucht-Pfons) and H51 (Pfons-Brenner). Lombardi Ltd. is responsible for the planning of the excavation.
Turin-Ceres - Connection of the line with the RFI network - Risk AnalysisReferences_2541
The connection of the Turin-Ceres railway (Gruppo Torinese Trasporti) with the Turin railway network (Rete Ferroviaria Italiana) represents important underground works of approximately 4.2 km, involving the entire Turin Railway Node. The critical issues related to the interconnection of two different railway systems required the elaboration of an extensive risk analyses, consistent with the requirements indicated by D.M. 28.10.2005 “Safety in railway tunnels”. The analysis includes the verification of compliance with the safety requirements, the determination of the expected risk level for the three events envisaged by the D.M./2005 (derailment, collision, fire), an estimate of possible additional measures which may be necessary to achieve the objectives and an assessment of these measures through a cost-benefit balance. For the case of fire, numerous 3D fluid dynamics simulations of smoke and heat propagation and specific escape models in the different scenarios, established according to “logical tree” structures on several levels and necessary to estimate the probability of occurrence of each event, have been developed. The elaboration of the analysis allowed to verify that the expected risk level, calculated for the infrastructure in question, can be reduced through the adoption of supplementary measures, determining which of them are reasonably practicable.
Line 150, Lausanne - GenevaReferences_6011
The studies conducted in the framework of Rail 2030 and the long-term development of the Geneva node (master plan Horizon 2050) have highlighted the need to build two further tracks at Geneva main station by 2025. Since 2011, several preliminary studies have been conducted to increase the service while respecting the established financial budget. The preliminary study called “EP 2015” is the basic scenario for the preliminary design studies to be undertaken. The framework agreement underlying the extension of the Geneva underground station was signed on December 7th, 2015. The Confederation, the Canton of Geneva and the Municipality of Geneva will invest over 1.6 billion Francs in the underground expansion of Cornavin station. The selected project involves the construction of two underground tracks and a platform. The trains will access the new tracks via a double-track tunnel on the Lausanne side and a single-track tunnel on the Airport side. Lombardi Engineering Ltd., leader of the JV G3, together with its partners, is responsible for the preliminary design (phase 31) of the double-track access on the Lausanne side for civil works (access ramp section: 246 m, section in cut & cover 184 m, tunnel 1’003 m, section in cut & cover in the connection area to the station 296 m, total 1’729 m) and optionally for all the subsequent phases (from 32 to 53, design, project management, commissioning). The coordination between civil engineering and railway technology is also included in the mandate. The execution of the works is planned under full train operation. The underground structures will be excavated in clay (alluvial materials) and in the moraine, partially in the Rhône aquifer, in difficult geotechnical and geomechanical conditions.
Koralm TunnelReferences_167
The Koralm line represents the extension of the trans-European corridor in the border region with Italy and is part of the axis that from Danzica, through Warsaw, Vienna, Trieste and Venice leads to Bologna, connecting in this way the Baltic sea with the Mediterranean sea. The regional links between Styria and Carinthia are sensitively improved allowing an optimal connection with the main towns of Graz and Klagenfurt. Technical difficulties: Excavation with TBM and segmental lining in crystalline rock with coverage up to 1'250 m as well as in sedimentary rocks and in loose permeable material; Crossing of various technically difficult regions due to crystalline rocks and fault zones. Furthermore, a large fault zone is located in the Lavanttal (Carinthia section) between the tertiary and the crystalline rock; Complex logistic conditions for the provisioning and the disposal by means of galleries (up to 17 km of length). Methods and construction schedules: 2/3 of the tunnel in mechanized excavation using 3 TBMs; 1/3 of the tunnel with traditional excavation, of which 50% with amplification of the exploratory gallery; Styria: 2 x Double-Shield Hardrock-TBMs (in the crystalline rock section), precast segmental lining, length ca. 2x17 km, diameter 9,90 m, currently under construction; Carinthia: shielded TBM with earth pressure, subsequently adapted for advancement in crystalline hard rock, precast segmental lining, length ca. 2 x 10 km, diameter ca. 9,90m; Construction period: scheduled from 2009 to 2022.
Tunnel T-48References_142
The T-48 Tunnel is part of the railway line linking the cities of Udhampur and Srinagar. The tunnel length is 10'250 m, including the two portals and the cut&cover section of approx. 70 m at the north portal. The gradient is 1.25% in straight and 1% in the curves. The layout comprises the single track railway main tunnel (internal section 40 sqm) and the parallel escape tunnel (internal section 18.4 sqm). Pedestrian cross passages are foreseen every 375 m (internal section of 9.2 sqm, 18.4 sqm for drivable ones equivalent to the escape tunnel). The overburden varies within the few tens of metres at the north portal up to 1'150 m in the central portion. The major part of the tunnel shall be excavated in phyllite and quartzitic phyllite with possible presence of gypsum bands. Fault crossing cannot be excluded. At approx. 2 km from the south portal, the overburden drops from 400 m to 80 m due to the crossing of a gorge. Because of the geological conditions and the scarce information along the central tunnel section, drill&blast method was preferred. The excavation and support measures definition is done according to the observational method. The suitability of the selection is constantly checked by means of the monitoring system and alarm limits defined according to the expected behaviour as evaluated by the geomechanical analyses. The calibration of the parameters on the base of the real behaviour is not excluded. At present, approx. 15'000 m of excavation (corrisponding to 75%) has successfully been carried out from the various fronts and aroung 7'000 m of final concrete lining (35%).
Bommerstein TunnelReferences_1091
The railway L890 is an important link between the Zurich area and the Grisons as well as Austria and carries 180 passenger and freight trains every day. The 453 m long, excavated Bommerstein Tunnel was put into operation in 1941. It has a horseshoe profile and consists mostly of masonry. Around a fifth of the vault’s length is sealed only by sprayed mortar. With the planned partial renewal, the railway installations will be renewed and the building structure repaired. The works will guarantee the structural and operational safety as well as the suitability of the tunnel for the next 30 years. Measures: - Sealing of the tunnel lining; - Invert and track lowering; - Construction of rescue niches; - Renovation of the drainage system; - New track superstructure and substructure (concrete sleepers); - Adjustment of the structure gauge; - New conductor rail; - Adjustment of the cable systems; - Repair of the tunnel portals. - Bottom and track lowering, substructure rehabilitation starting at the tunnel portals - Temporary and definitive Tiefrietbach stream culvert The execution of the technical measures takes place under operation in continuous single-track operation phases.
1 - 8Next